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Motivation: Understanding the Initial State

• Jet suppression in Au+Au collisions at RHIC is 

seen as a possible evidence for deconfinement.

• Collisions of small with large nuclei can help us to 

quantify whether or not this is due to initial state 

effects/parton saturation or final state effects.

Au+Au Collisions d+Au collision
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Nuclear Modification Factor: RAA

• We define the nuclear 
modification factor as:

• At mid-rapidity (for 
pions):
– RAA<<1 for Au+Au

– RdA>1 for d+Au

• Supporting evidence 
for “jet quenching”. 
d+Au was needed to 
show final state effect.

η

σ

σ

η

σ

ddp

dN

ddp

d

pR

T

NN

NN

inel

binary

T

AA

TAA 2

2

)(
><

=

PRELIMINARY



21st Winter Workshop 
on Nuclear Dynamics 

Andrew Glenn 
University of Colorado

4

PHENIX Muon Detectors

• Muon arms
– 1.2<|η|<2.4

– ∆φ=2π
– P>2 GeV/c

– Triggers

• “Muons”
– Stopped hadrons

– Light meson 
decays

– Heavy decays

Au

d

Two ways for Muon arms
to study hadrons.
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MuID
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Muons from Light Meson Decays

• Muon event collision vertex distribution
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• D   cτ = 0.03 cm      Decays before absorber

• π cτ = 780  cm     Most are absorbed, but some decay first          

• K    cτ = 371 cm      Most are absorbed, but some decay first

c >> 80cm

π
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•Rcp is defined as  particle yield in central collisions 

normalized by number of nucleon nucleon inelastic 

scatterings divided by particle yield in peripheral 

collisions normalized in the same way.

RCP measurement
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Centrality and Nbin

• Event centralities are defined 
as hard cut regions of BBC 
south hit distribution by the 
percentages of total dAu 
inelastic cross section 

• Number of hits in south BBC is 
proportional to Au participants. 
The relation between them 
follows Negative Binominal 
Distribution.

• By comparing the number of 
hits distribution from data and 
the NBD, a hard cut region of 
BBC hit distribution can be 
mapped to an nbinary 
distribution. 
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Bias due to BBC response

BBC as a detector responds to different physics processes in 
different ways.

• Effect one : Inelastic collisions with a hadron in our central or 
muon arm acceptance are more likely to fire the BBC detector than 
an unbiased inelastic collision. This causes a trigger bias in the 
yield because BBC+hadron events can be seen by BBC more 
easily than BBC events. 

• Effect two : In general, hard binary collisions produce more 
particles. BBC may see more tracks. This causes  the mapping 
from BBC nhit to nbinary different for different event categories. We 
call it bin shifting.

• For Rcp measurement, we need to take care both of trigger bias and 
bin shifting . 

• Results in 0-7% corrections
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PHENIX Results
PTH = Punch Through Hadrons

HDM = Hadronic Decay Muon
nucl-ex/0411054 (accepted by PRL)
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PHENIX Results II

Au

d
Au

1.5 > pT (GeV/c) > 4.0

Suppression at forward η. Slight enhancement in the backward η?
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Compare with BRAHMS

Basically consistent. Systematically somewhat more forward suppression?
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Physics at forward rapidities

•New regime of parton 
physics at low-x.
• Can be reached by 
going to large rapidities.

For Au nuclei
(Going N to S)

For deuterons
(Going S to N)
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Coherent Multiple Scattering
• Depletion of small-x 

partons in a nucleus 
compared to those in a 
nucleon (Shadowing). 

• Coherent multiple 
scattering can lead to 
dynamical nuclear 
shadowing.

• Leads to suppression at 
forward rapidities/more 
central events.

Qiu & Vitev hep-ph/0405068
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Direct Comparison with FGS

SGFS,ρ

SFGS,WS

Calculation for BRAHMS
RCP which has a different 
centrality definition.
(R. Vogt arXiv:hep-ph/0405060)

The FGS shadowing 
parameterization does not 
reproduce the data well.

Hadron Punch Through
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Recombination

• Recombination of 
soft and shower 
partons leads to a 
reduction of the 
soft parton density 
in the deuteron 
side.

• Explains the 
forward backward 
asymmetry and 
why RCP (protons) 
> RCP (mesons) at 
midrapidity.

Hwa, Yang and Fries nucl-th/0410111

BRAHMS data
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Color Glass Condensate

• Parton model => nucleon 
consists of “free” point-like 

constituents: quarks and 

gluons.

• Color Glass Condensate

is a QCD based theory for 
the dense partonic matter 

at small-x and predicts 
depletion of scattering 

centers through gluon 

fusion processes (gluon 
saturation). k is transverse 

momentum of partons 

Qs is saturation scale

D. Kharzeev hep-ph/0307037

Increasing y
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CGC Model Comparison

Hadron Punch Through

Centrality and rapidity dependence are roughly correct.

This calculation does a slightly better job of reproducing the 

BRAHMS data.
Calculation from Kharzeev arXiv:hep-ph/0405045
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Summary

• We have measured charged hadron RCP using 
the PHENIX Muon Arms for d+Au collisions.

• Much care is required for d+Au centrality.

• We observe:
– Slight enhancement on the Gold going direction 

(South Arm).
– Suppression on the Deuteron going direction     

(North Arm). 

• Forward suppression is qualitatively consistent 
with several theories from shadowing/saturation 
type effects. Various possible contributions.

• Slight enhancement at backward rapidity is not 
well understood (anti-shadowing).
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Decay Muons
Ø Light hadrons like pions and kaons can decay 
into muons before reaching the MuID. 
Ø The decay probability of a meson with 
momentum p is proportional to the distance (L) 
between collision vertex and absorber: 

ØHence by looking at the the z-vertex 
distribution for events with single muon
candidates, we can separate the muons that 
come from pions/kaons from other 
contributions.
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Muon Production

• Origins of muons
– PYTHIA p+p @ 
√s=200GeV

– low PT: 
• light hadron decays

– high PT: 
• Heavy quark decays
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QM’04
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Eskola, Kolhinen, Vogt hep-ph/0104124

Physics at forward rapidities

•New regime of parton 
physics at low-x.
• Can be reached by 
going to large rapidities.

For Au nuclei
(Going N to S)

For deuterons
(Going S to N)
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